6533b7dafe1ef96bd126f720
RESEARCH PRODUCT
Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive $^{222}$Ra and $^{228}$Ra Beams
Pa ButlerLp GaffneyP SpagnolettiK AbrahamsM BowryJ CederkällG De AngelisH De WittePe GarrettA GoldkuhleC HenrichA IllanaK JohnstonDt JossJm KeatingsNa KellyM KomorowskaJ KonkiT KröllM LozanoBs Nara SinghD O’donnellJ OjalaRd PageLg PedersenC RaisonP ReiterJa RodriguezD RosiakS RotheM ScheckM SeidlitzTm ShneidmanB SiebeckJ SinclairJf SmithM StryjczykP Van DuppenS VinalsV VirtanenN WarrK Wrzosek-lipskaM Zielińskasubject
Nuclear TheoryAtomic Physics (physics.atom-ph)Nuclear TheoryFOS: Physical sciencesnuclear structure and decaysPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)electromagnetic transitionsPhysics::Accelerator Physicscollective levelsPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)ydinfysiikkaNuclear ExperimentNuclear Experimentdescription
There is sparse direct experimental evidence that atomic nuclei can exhibit stable pear shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole ($E3$) matrix elements have been determined for transitions in $^{222,228}$Ra nuclei using the method of sub-barrier, multi-step Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of $E$3 matrix elements for different nuclear transitions is explained by describing $^{222}$Ra as pear-shaped with stable octupole deformation, while $^{228}$Ra behaves like an octupole vibrator.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-31 |