6533b7dbfe1ef96bd12714fe
RESEARCH PRODUCT
Modelling molecular iodine emissions in a coastal marine environment: The link to new particle formation
Paul I. WilliamsThorsten HoffmannC. HongweiS. M. BallGordon McfiggansRoderic L. JonesM. BitterJohn M. C. PlaneAlfonso Saiz-lopezsubject
homogeneous nucleationspectroscopyAtmospheric ScienceAnalytical chemistryIodine oxideoiochemistrylcsh:ChemistryTropospherechemistry.chemical_compoundCloud condensation nucleiSpectroscopy[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmospherepotential influenceChemistryDifferential optical absorption spectroscopyCondensationboundary-layerOzone depletionlcsh:QC1-999ozonelcsh:QD1-999troposphereParticleoxidespectrometer/dk/atira/pure/subjectarea/asjc/1900/1902lcsh:Physicsdescription
International audience; A model of iodine chemistry in the marine boundary layer (MBL) has been used to investigate the impact of daytime coastal emissions of molecular iodine (I2). The model contains a full treatment of gas-phase iodine chemistry, combined with a description of the nucleation and growth, by condensation and coagulation, of iodine oxide nano-particles. In-situ measurements of coastal emissions of I2 made by the broadband cavity ring-down spectroscopy (BBCRDS) and inductively coupled plasma-mass spectrometry (ICP/MS) techniques are presented and compared to long path differential optical absorption spectroscopy (DOAS) observations of I2 at Mace Head, Ireland. Simultaneous measurements of enhanced I2 emissions and particle bursts show that I2 is almost certainly the main precursor of new particles at this coastal location. The ratio of IO to I2 predicted by the model indicates that the iodine species observed by the DOAS are concentrated over a short distance (about 8% of the 4.2 km light path) consistent with the intertidal zone, bringing them into good agreement with the I2 measurements made by the two in-situ techniques. The model is then used to investigate the effect of iodine emission on ozone depletion, and the production of new particles and their evolution to form stable cloud condensation nuclei (CCN).
year | journal | country | edition | language |
---|---|---|---|---|
2006-03-20 |