6533b7dcfe1ef96bd1272a7d

RESEARCH PRODUCT

Computation of the topological type of a real Riemann surface

Caroline Kalla Christian Klein

subject

Computational Geometry (cs.CG)FOS: Computer and information sciencesreal Riemann surface[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]homology basis[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Algebraic Geometryreal algebraic curveholomorphic differentialsFOS: MathematicsComputer Science - Computational Geometryreal ovals[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Algebraic Geometry (math.AG)

description

We present an algorithm for the computation of the topological type of a real compact Riemann surface associated to an algebraic curve, i.e., its genus and the properties of the set of fixed points of the anti-holomorphic involution $\tau$, namely, the number of its connected components, and whether this set divides the surface into one or two connected components. This is achieved by transforming an arbitrary canonical homology basis to a homology basis where the $\mathcal{A}$-cycles are invariant under the anti-holomorphic involution $\tau$.

https://hal.archives-ouvertes.fr/hal-00690188