6533b7ddfe1ef96bd1274670

RESEARCH PRODUCT

Representations of Affine Kac-Moody Algebras

Jouko Mickelsson

subject

Pure mathematicsQuantum affine algebraDynkin diagramMathematics::Quantum AlgebraLie algebraCartan matrixNest algebraKilling formMathematics::Representation TheorySemisimple Lie algebraAffine Lie algebraMathematics

description

In the first chapter we explained how simple finite-dimensional Lie algebras can be completely characterized in terms of their Cartan matrices or Dynkin diagrams. The same holds for an arbitrary semisim-ple finite-dimensional Lie algebra. A semisimple Lie algebra is a direct sum of simple ideals which are pairwise orthogonal with respect to the Killing form. It follows that the Cartan matrix of a semisimple Lie algebra decomposes to a block diagonal form, each block representing a simple ideal. Similarly, the Dynkin diagram is a disconnected union of Dynkin diagrams of simple Lie algebras. Next we shall study certain infinite-dimensional Lie algebras which have many similarities with the simple finite-dimensional Lie algebras. In particular, they can be described in terms of generalized Cartan matrices. These algebras were independently introduced in Kac [1968] and Moody [1968].

https://doi.org/10.1007/978-1-4757-0295-8_2