6533b7ddfe1ef96bd1274928
RESEARCH PRODUCT
Melting temperature prediction by thermoelastic instability: An ab initio modelling, for periclase (MgO)
Marcello MerliAlessandro Pavesesubject
010302 applied physicsMaterials scienceGeneral Chemical EngineeringAnharmonicity0211 other engineering and technologiesAb initioThermodynamics02 engineering and technologyGeneral ChemistryFunction (mathematics)engineering.material01 natural sciencesInstabilityComputer Science ApplicationsPhysical propertysymbols.namesakeThermoelastic dampingHelmholtz free energy0103 physical sciencessymbolsengineeringPericlase021102 mining & metallurgydescription
Abstract Melting temperature (TM) is a crucial physical property of solids and plays an important role for the characterization of materials, allowing us to understand their behavior at non-ambient conditions. The present investigation aims i) to provide a physically sound basis to the estimation of TM through a “critical temperature” (TC), which signals the onset of thermodynamic instability due to a change of the isothermal bulk modulus from positive to negative at a given PC-VC-TC point, such that (∂P/∂V)VC,TC = -(∂2F/∂V2) VC,TC = 0; ii) to discuss the case of periclase (MgO), for which accurate melting temperature observations as a function of pressure are available. Using first principles calculations, quasi-harmonic approximation and anharmonic correction, we model the Helmholtz potential, i.e. F(V,T), and determine pressure thereby. A comparison between measured and predicted TM values as a function of pressure shows achievement of an average discrepancy of ~2.9%, in the range 0–25 GPa and 3000–5000 K.
year | journal | country | edition | language |
---|---|---|---|---|
2021-06-01 |