6533b7ddfe1ef96bd1274944

RESEARCH PRODUCT

A Structural Theorem for Metric Space Valued Mappings of Φ-bounded Variation

Caterina Maniscalco

subject

Discrete mathematicsInjective metric spaceextensionstructural theoremTotally bounded space54C35$\Phi$-bounded variation54E35Intrinsic metricmetric space valued mapings variation $Phi$-variation extension structural theorem.metric space valued mappingsUniform normSettore MAT/05 - Analisi MatematicaBounded functionBounded variationGeometry and Topologyvariation26A45Metric differentialReal lineAnalysisMathematics

description

In this paper we introduce the notion of $\Phi$-bounded variation for metric space valued mappings defined on a subset of the real line. Such a notion generalizes the one for real functions introduced by M. Schramm, and many previous generalized variations. We prove a structural theorem for mappings of $\Phi$-bounded variation. As an application we show that each mapping of $\Phi$-bounded variation defined on a subset of $\mathbb{R}$ possesses a $\Phi$-variation preserving extension to the whole real line.

http://hdl.handle.net/10447/53214