6533b7ddfe1ef96bd127523f
RESEARCH PRODUCT
The electron gas with short coherence length pairs: how to approach the stronger coupling limit?
Martin Letzsubject
Condensed Matter::Quantum GasesPhysicsHubbard modelCondensed matter physicsEnergy Engineering and Power TechnologyFermi surfaceCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCoherence lengthQuasiparticleDensity of statesCondensed Matter::Strongly Correlated ElectronsElectrical and Electronic EngineeringFermi gasPseudogapBosondescription
Abstract The attractive Hubbard model is investigated in 2D using a T -matrix approach. In a self-consistent calculation pairs as infinite lifetime Bosons only exist in the atomic limit and therefore a Fermi surface can be investigated also in the stronger coupling regime. A heavy quasiparticle peak with a weak dispersion crosses the Fermi surface at k F whereas light, single particle excitations do only exist far away from the Fermi surface. At low temperatures there seem to exist different self-consistent solutions. In one of them a pseudogap opens even in the integrated density of states. In the present work accurate k -dependent and k -integrated spectral quantities for a 2D finite lattice are presented.
year | journal | country | edition | language |
---|---|---|---|---|
2001-05-01 | Physica C: Superconductivity |