6533b7ddfe1ef96bd127551b
RESEARCH PRODUCT
Characterization of sulfhydryl oxidase from Aspergillus tubingensis
Kristiina KruusPerttu PermiPerttu PermiMaija-liisa MattinenMaija-liisa MattinenMikko ArvasGreta FaccioGreta FaccioOuti NivalaJohanna Buchertsubject
0301 basic medicineentsyymitBOVINE-MILKThioredoxin reductaselcsh:Animal biochemistryBiochemistrySubstrate Specificitychemistry.chemical_compoundNonribosomal peptide synthesisEnzyme Stabilitylcsh:QD415-436DisulfidesDISULFIDE BONDSPeptide Synthaseschemistry.chemical_classificationbiologyGliotoxinChemistrynonribosomal peptide synthesisHydrogen-Ion ConcentrationGlutathioneFAMILYSOXSglutathione oxidationhomesienetAspergillusBiochemistrySENSITIVITYsecreted sulfhydryl oxidaseOxidoreductasesResearch ArticleDithiol oxidaseCofactorlcsh:Biochemistry03 medical and health sciencesNonribosomal peptideNATURAL-PRODUCTSoksidoreduktaasitBIOSYNTHESISlcsh:QP501-801Molecular Biologysecondary metabolismPURIFICATIONIDENTIFICATION030102 biochemistry & molecular biologyCXXC-MOTIFGlutathioneNIGERluonnonaineet030104 developmental biologyEnzymedithiol oxidasebiology.protein1182 Biochemistry cell and molecular biologyAspergillus tubingensisSecreted sulfhydryl oxidaseSecondary metabolismGlutathione oxidationCysteinedescription
Background Despite of the presence of sulfhydryl oxidases (SOXs) in the secretomes of industrially relevant organisms and their many potential applications, only few of these enzymes have been biochemically characterized. In addition, basic functions of most of the SOX enzymes reported so far are not fully understood. In particular, the physiological role of secreted fungal SOXs is unclear. Results The recently identified SOX from Aspergillus tubingensis (AtSOX) was produced, purified and characterized in the present work. AtSOX had a pH optimum of 6.5, and showed a good pH stability retaining more than 80% of the initial activity in a pH range 4-8.5 within 20 h. More than 70% of the initial activity was retained after incubation at 50 °C for 20 h. AtSOX contains a non-covalently bound flavin cofactor. The enzyme oxidised a sulfhydryl group of glutathione to form a disulfide bond, as verified by nuclear magnetic resonance spectroscopy. AtSOX preferred glutathione as a substrate over cysteine and dithiothreitol. The activity of the enzyme was totally inhibited by 10 mM zinc sulphate. Peptide- and protein-bound sulfhydryl groups in bikunin, gliotoxin, holomycin, insulin B chain, and ribonuclease A, were not oxidised by the enzyme. Based on the analysis of 33 fungal genomes, SOX enzyme encoding genes were found close to nonribosomal peptide synthetases (NRPS) but not with polyketide synthases (PKS). In the phylogenetic tree, constructed from 25 SOX and thioredoxin reductase sequences from IPR000103 InterPro family, AtSOX was evolutionary closely related to other Aspergillus SOXs. Oxidoreductases involved in the maturation of nonribosomal peptides of fungal and bacterial origin, namely GliT, HlmI and DepH, were also evolutionary closely related to AtSOX whereas fungal thioreductases were more distant. Conclusions AtSOX (55 kDa) is a fungal secreted flavin-dependent enzyme with good stability to both pH and temperature. A Michaelis-Menten behaviour was observed with reduced glutathione as a substrate. Based on the location of SOX enzyme encoding genes close to NRPSs, SOXs could be involved in the secondary metabolism and act as an accessory enzyme in the production of nonribosomal peptides. Electronic supplementary material The online version of this article (10.1186/s12858-017-0090-4) contains supplementary material, which is available to authorized users.
year | journal | country | edition | language |
---|---|---|---|---|
2017-12-08 | BMC Biochemistry |