6533b7defe1ef96bd1275d94

RESEARCH PRODUCT

(p,2)-equations resonant at any variational eigenvalue

Francesca VetroNikolaos S. PapageorgiouCalogero Vetro

subject

multiple solution01 natural sciencesResonance (particle physics)Dirichlet distributionsymbols.namesakeSettore MAT/05 - Analisi Matematicavariational eigenvalues0101 mathematicsEigenvalues and eigenvectorsMathematicsNumerical AnalysisApplied Mathematics010102 general mathematicsMathematical analysisp-LaplacianMathematics::Spectral TheoryTerm (time)010101 applied mathematicsComputational MathematicsNonlinear systemresonancecritical groupsymbolsp-Laplaciannonlinear regularity theoryLaplacianLaplace operatorAnalysis

description

We consider nonlinear elliptic Dirichlet problems driven by the sum of a p-Laplacian and a Laplacian (a (p,2) -equation). The reaction term at ±∞ is resonant with respect to any variational eigenvalue of the p-Laplacian. We prove two multiplicity theorems for such equations.

10.1080/17476933.2018.1508287http://hdl.handle.net/10447/419140