6533b7defe1ef96bd12766a2

RESEARCH PRODUCT

Magnetic configuration effects on the Wendelstein 7-X stellarator

Dinklage A.Beidler C.d.Helander P.Fuchert G.Maassberg H.Rahbarnia K.Sunn Pedersen T.Turkin Y.Wolf R.c.Alonso A.Andreeva T.Blackwell B.Bozhenkov S.Buttenschon B.Czarnecka A.Effenberg F.Feng Y.Geiger J.Hirsch M.Hofel U.Jakubowski M.Klinger T.Knauer J.Kocsis G.Kramer-flecken A.Kubkowska M.Langenberg A.Laqua H.p.Marushchenko N.Mollen A.Neuner U.Niemann H.Pasch E.Pablant N.Rudischhauser L.Smith H.m.Schmitz O.Stange T.Szepesi T.Weir G.Windisch T.Wurden G.a.Zhang D.Abramovic I.Akaslompolo S.Ali A.Alonso A.Belloso J.a.Aleynikov P.Aleynikova K.Alzbutas R.Anda G.Andreeva T.Ascasibar E.Assmann J.Baek S.-g.Baldzuhn J.Banduch M.Barbui T.Barlak M.Baumann K.Behr W.Beidler C.Benndorf A.Bertuch O.Beurskens M.Biedermann C.Biel W.Birus D.Blackwell B.Blanco E.Blatzheim M.Bluhm T.Bockenhoff D.Bolgert P.Borchardt M.Borsuk V.Boscary J.Bosch H.-s.Bottger L.-g.Bozhenkov S.Brakel R.Brand H.Brandt C.Brauer T.Braune H.Brezinsek S.Brunner K.-j.Brunner B.Burhenn R.Bussiahn R.Buttenschon B.Bykov V.Cai Y.Calvo I.Cannas B.Cappa A.Card A.Carls A.Carraro L.Carvalho B.Castejon F.Charl A.Chernyshev F.Cianciosa M.Citarella R.Ciupinski L.Claps G.Cole M.j.Cordella F.Cseh G.Czarnecka A.Czermak A.Czerski K.Czerwinski M.Czymek G.Da Molin A.Da Silva A.Dammertz G.De La Pena A.Degenkolbe S.Denner P.Dinklage A.Dittmar T.Dhard C.p.Dostal M.Drevlak M.Drewelow P.Drews P.Dudek A.Dundulis G.Durodie F.Van Eeten P.Effenberg F.Ehrke G.Endler M.Ennis D.Erckmann E.Esteban H.Estrada T.Fahrenkamp N.Feist J.-h.Fellinger J.Feng Y.Fernandes H.Fietz W.h.Figacz W.Fontdecaba J.Ford O.Fornal T.Frerichs H.Freund A.Fuchert G.Fuhrer M.Funaba T.Galkowski A.Gantenbein G.Gao Y.Regana J.g.Garcia-munoz M.Gates D.Gawlik G.Geiger B.Geiger J.Giannella V.Gierse N.Gogoleva A.Goncalves B.Goriaev A.Gradic D.Grahl M.Green J.Grosman A.Grote H.Gruca M.Grulke O.Guerard C.Hacker P.Haiduk L.Hammond K.Han X.Harberts F.Harris J.h.Hartfuss H.-j.Hartmann D.Hathiramani D.Hein B.Heinemann B.Heitzenroeder P.Henneberg S.Helander P.Hennig C.Sanchez J.h.Hidalgo C.Hirsch M.Hofel U.Holbe H.Hollfeld K.p.Holting A.Hoschen D.Houry M.Howard J.Huang X.Huber M.Huber V.Hunger H.Ida K.Ilkei T.Illy S.Israeli B.Ivanov A.Jablonski S.Jagielski J.Jakubowski M.Jelonnek J.Jenzsch H.Junghans P.Kacmarczyk J.Kaliatka T.Kallmeyer J.-p.Kamionka U.Karalevicius R.Kasahara H.Kasparek W.Kazakov Y.Kenmochi N.Keunecke M.Khilchenko A.Killer C.Kinna D.Kleiber R.Klinger T.Knauer J.Knaup M.Knieps A.Kobarg T.Kocsis G.Kochl F.Kolesnichenko Y.Konies A.Koppen M.Koshurinov J.Koslowski R.Konig R.Koster F.Kornejew P.Koziol R.Kramer M.Kramer-flecken A.Krampitz R.Kraszewsk P.Krawczyk N.Kremeyer T.Krings T.Krom J.Krychowiak M.Krzesinski G.Ksiazek I.Kubkowska M.Kuhner G.Kurki-suonio T.Kwak S.Landreman M.Lang R.Langenberg A.Langish S.Laqua H.Laqua H.p.Laube R.Lazerson S.Lechte C.Lennartz M.Leonhardt W.Lewerentz L.Liang Y.Linsmeier C.Liu S.Lobsien J.-f.Loesser D.Cisquella J.l.Lore J.Lorenz A.Losert M.Lubyako L.Lucke A.Lumsdaine A.Lutsenko V.Maassberg H.Maisano-brown J.Marchuk O.Mardenfeld M.Marek P.Marsen S.Marushchenko M.Masuzaki S.Maurer D.Mccarthy K.Mcneely P.Meier A.Mellein D.Mendelevitch B.Mertens P.Mikkelsen D.Mishchenko O.Missal B.Mittelstaedt J.Mizuuchi T.Mollen A.Moncada V.Monnich T.Morisaki T.Moseev D.Munk R.Murakami S.Musielok F.Nafradi G.Nagel M.Naujoks D.Neilson H.Neubauer O.Neuner U.Ngo T.Niemann H.Nocentini R.Nuhrenberg C.Nuhrenberg J.Obermayer S.Offermanns G.Ogawa K.Ongena J.Oosterbeek J.w.Orozco G.Otte M.Pablant N.Rodriguez L.p.Pan W.Panadero N.Alvarez N.p.Panin A.Papenfuss D.Paqay S.Pasch E.Pavone A.Pawelec E.Pelka G.Peng X.Perseo V.Peterson B.Pieper A.Pilopp D.Pingel S.Pisano F.Plaum B.Plunk G.Povilaitis M.Preinhaelter J.Proll J.Puiatti M.-e.Sitjes A.p.Purps F.Rack M.Rahbarnia K.Recsei S.Reiman A.Reiter D.Remppel F.Renard S.Riedl R.Riemann J.Rimkevicius S.Risse K.Rodatos A.Rohlinger H.Rome M.Rong P.Roscher H.-j.Roth B.Rudischhauser L.Rummel K.Rummel T.Runov A.Rust N.Ryc L.Ryosuke S.Sakamoto R.Samartsev A.Sanchez M.Sano F.Satake S.Satheeswaran G.Schacht J.Schauer F.Scherer T.Schlaich A.Schlisio G.Schluter K.-h.Schmitt J.Schmitz H.Schmitz O.Schmuck S.Schneider M.Schneider W.Scholz M.Scholz P.Schrittwieser R.Schroder M.Schroder T.Schroeder R.Schumacher H.Schweer B.Shanahan B.Shikhovtsev I.v.Sibilia M.Sinha P.Siplia S.Skodzik J.Slaby C.Smith H.Spiess W.Spong D.a.Spring A.Stadler R.Standley B.Stange T.Stephey L.Stoneking M.Stridde U.Sulek Z.Pedersen T.s.Suzuki Y.Svensson J.Szabo V.Szabolics T.Szepesi T.Szokefalvi-nagy Z.Tamura N.Terra A.Terry J.Thomas J.Thomsen H.Thumm M.Von Thun C.p.Timmermann D.Titus P.Toi K.Travere J.m.Traverso P.Tretter J.Mora H.t.Tsuchiya H.Tsujimura T.Tulipan S.Turkin Y.Turnyanskiy M.Unterberg B.Urban J.Urbonavicius E.Vakulchyk I.Valet S.Van Milligen B.Vela L.Velasco J.-l.Vergote M.Vervier M.Vianello N.Viebke H.Vilbrandt R.Vorkorper A.Wadle S.Wang E.Wang N.Warmer F.Wauters T.Wegener L.Weggen J.Wegner T.Wei Y.Weir G.Wendorf J.Wenzel U.Wiegel B.Wilde F.Windisch T.Winkler E.Winters V.Wolf R.Wolf S.Wolowski J.Wright A.Wurden G.Xanthopoulos P.Yamada H.Yamada I.Yasuhara R.Yokoyama M.Zajac J.Zarnstorff M.Zeitler A.Zhang D.Zhang H.Zhu J.Zilker M.Zimbal A.Zocco A.Zoletnik S.Zuin M.

subject

PhysicsTokamakField (physics)General Physics and AstronomyPlasma7. Clean energy01 natural sciences010305 fluids & plasmasBootstrap currentComputational physicsMagnetic fieldlaw.inventionMagnetic mirrorWendelstein 7-X stellaratorPhysics and Astronomy (all)lawPhysics::Plasma Physics0103 physical sciencesWendelstein 7-X plasmasWendelstein 7-X010306 general physicsStellarator

description

The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τE > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures. Results from the first experimental campaign of the Wendelstein 7-X stellarator demonstrate that its magnetic-field design grants good control of parasitic plasma currents, leading to long energy confinement times.

10.1038/s41567-018-0141-9https://hdl.handle.net/21.11116/0000-0002-87D1-921.11116/0000-0002-87D2-821.11116/0000-0001-F331-521.11116/0000-0001-F333-3