6533b7defe1ef96bd1276735
RESEARCH PRODUCT
Dipole operator constraints on composite Higgs models
David M. StraubMatthias KönigMatthias NeubertMatthias Neubertsubject
QuarkPhysicsParticle physicsNeutron electric dipole momentPhysics and Astronomy (miscellaneous)Physics beyond the Standard ModelHigh Energy Physics::LatticeFlavourElectroweak interactionHigh Energy Physics::PhenomenologyFOS: Physical sciencesddc:DipoleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Composite Higgs modelsHiggs bosonHigh Energy Physics::ExperimentRegular Article - Theoretical PhysicsEngineering (miscellaneous)description
Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipole moment and observables sensitive to flavour-changing neutral currents, such as the $B\to X_s\gamma$ branching ratio and $\epsilon'/\epsilon$. After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study different choices for the electroweak representations of the composite fermions motivated by electroweak precision tests as well as different flavour structures, including flavour anarchy and $U(3)^3$ or $U(2)^3$ flavour symmetries in the strong sector. In models with "wrong-chirality" Yukawa couplings, we find a strong bound from the neutron electric dipole moment, irrespective of the flavour structure. In the case of flavour anarchy, we also find strong bounds from flavour-violating dipoles, while these constraints are mild in the flavour-symmetric models.
year | journal | country | edition | language |
---|---|---|---|---|
2014-07-01 | The European Physical Journal C |