6533b7defe1ef96bd1276982
RESEARCH PRODUCT
DNA replication arrest in response to genotoxic stress provokes early activation of stress-activated protein kinases (SAPK/JNK).
Julia DamrotGerhard FritzWynand P. RoosSteve Q. BarrantesLars HelbigBernd Kainasubject
AphidicolinDNA ReplicationDNA damageUltraviolet RaysPoly ADP ribose polymeraseCell Linechemistry.chemical_compoundMiceAphidicolinStructural BiologyCricetinaeAnimalsHumansLymphocytesPhosphorylationProtein kinase AMolecular BiologyNucleic Acid Synthesis InhibitorsBRCA2 ProteinMice KnockoutbiologyKinaseCell CycleDNA replicationJNK Mitogen-Activated Protein KinasesFibroblastsMolecular biologyProliferating cell nuclear antigenDNA-Binding ProteinsEnzyme ActivationchemistryPyrimidine Dimersbiology.proteinPhosphorylationApoptosis Regulatory ProteinsDNA Damagedescription
Abstract The impact of DNA damage-induced replication blockage for early activation of stress kinases [stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)] is largely unknown. Here, we show that induction of dual phosphorylation of SAPK/JNK by the DNA polymerase inhibitor aphidicolin was not ameliorated by additional exposure to ultraviolet (UV) light, indicating that overlapping mechanisms participate in signaling to SAPK/JNK triggered by both agents. UV-induced DNA replication blockage, cyclobutane pyrimidine dimer formation and DNA strand break induction coincided with SAPK/JNK phosphorylation at early (≤ 30 min) but not late (≥ 2 h) time points after exposure. Genotoxin-stimulated SAPK/JNK activation was attenuated in nonproliferating cells, indicating that S phase-dependent mechanisms are involved in signaling to SAPK/JNK. Correspondingly, UV-induced phosphorylation of SAPK/JNK was higher in S-phase cells as compared with G1-phase cells. Activation of SAPK/JNK by genotoxins was below detection limit in nonproliferating human peripheral blood lymphocytes, whereas peripheral blood lymphocytes stimulated to proliferation displayed clear SAPK/JNK activation. UV-induced phosphorylation of SAPK/JNK was attenuated in XPC-defective cells, ameliorated in BRCA2 mutated cells and not changed in cells lacking ATM, DNA-PK, CSB, XPA, p53, ERCC1 or PARP as compared with the corresponding wild types. Based on these data, we suggest that DNA replication blockage caused by genotoxin-induced DNA damage contributes to early activation of SAPK/JNK.
year | journal | country | edition | language |
---|---|---|---|---|
2009-02-01 | Journal of molecular biology |