6533b7defe1ef96bd12769d6
RESEARCH PRODUCT
Chiral Organometallic Triangles with Rh−Rh Bonds. 2. Compounds Prepared from Enantiopure cis-Rh2(C6H4PPh2)2(OAc)2(HOAc)2 and Their Catalytic Potentials
F. Albert CottonSalah‐e. StiribaCarlos A. MurilloXiaoping WangRongmin Yusubject
Inorganic ChemistryTerephthalic acidAcetic acidchemistry.chemical_compoundEnantiopure drugchemistryStereochemistryOxalic acidCarboxylatePhysical and Theoretical ChemistryEnantiomerMedicinal chemistryCatalysisdescription
Enantiomers of the orthometalated dirhodium compound cis-Rh2(C6H4PPh2)2(OAc)2(HOAc)2 (R-1 and S-1) were prepared from carboxylate exchange reactions of the resolved diasteroisomers of cis-Rh2(C6H4PPh2)2(protos)2(H2O)2 (protos = N-4-methylphenylsulfonyl-l-proline anion) and acetic acid. These compounds react with excess Me3OBF4 in CH3CN, producing the enantiomers of [cis-Rh2(C6H4PPh2)2(CH3CN)6](BF4)2 (R-2 and S-2) which have six labile and replaceable CH3CN ligands in equatorial and axial positions. Reactions of R-2 and S-2 with tetraethylammonium salts of the linear dicarboxylic acids, terephthalic acid (HO2CC6H4CO2H), oxalic acid (HO2CCO2H), and 4,4'-diphenyl-dicarboxylic acid (HO2CC6H4C6H4CO2H) afford the enantiopure triangular supramolecules [cis-Rh2(C6H4PPh2)2(O2CC6H4CO2)(py)2]3, RRR-3 and SSS-3, Rh6(cis-C6H4PPh2)6(O2CCO2)3(py)5(CH2Cl2), RRR-4 and SSS-4, and Rh6(cis-C6H4PPh2)6(O2CC6H4C6H4CO2)3(py)4(CH2Cl2)2, RRR-5 and SSS-5, respectively. The absolute structures of each of the enantiomers of 1, 3, 4, and 5 were determined by X-ray diffraction analyses. The enantiomers of 3, 4, and 5 were found to be enantiomorphically isostructural, whereas R-1 and S-1 crystallized in different space groups. In 4 and 5, CH2Cl2 molecules coordinate to rhodium atoms in the axial positions. The 1H and 31P[1H] NMR spectra of all compounds are reported. The triangular compounds are redox-active, and their electrochemistry is also discussed. An assay of the catalytic activity/selectivity performance of the triangles for typical metal carbene transformation, using the model intermolecular cyclopropanation of styrene with ethyl diazoacetate in both homogeneous and heterogeneous phases, show that these chiral triangles are very active and have remarkable selectivity when compared with simple Rh2 paddle-wheel catalysts with chiral amidate ligands.
year | journal | country | edition | language |
---|---|---|---|---|
2005-11-08 | Inorganic Chemistry |