6533b81ffe1ef96bd1277088

RESEARCH PRODUCT

Sensitivity of shortwave radiative fluxes to the vertical distribution of aerosol single scattering albedo in the presence of a desert dust layer

Marco CaccianiDaniela MeloniJ. L. Gómez-amoA. Di SarraMaría P. Utrillas

subject

TroposphereAtmospheric ScienceAngstrom exponentAtmospheric radiative transfer codesMeteorologySingle-scattering albedoSolar zenith angleRadiative transferEnvironmental scienceAlbedoAtmospheric sciencesGeneral Environmental ScienceAerosol

description

Abstract The aim of this work is to quantify the sensitivity of shortwave radiative fluxes to changes in the vertical distribution of aerosol absorption, taken into account through the aerosol Single Scattering Albedo (SSA). The case study represents a real atmospheric situation with a desert dust layer (DDL) in the mid troposphere over an urban Boundary Layer (BL) observed at Rome on 20 June 2007. A moderately high aerosol optical depth (AOD), 0.292 at 550 nm, and low Angstrom exponent of 0.30 were measured. The observed case was reconstructed with a radiative transfer model, in which the SSA of the boundary layer aerosols was varied from that of a highly absorbing aerosol type (urban) to a highly scattering one (clear marine). The SSA of the DDL is determined keeping fixed the measured SSA of the whole atmospheric column. The simulations show notable changes in the surface and top of the atmosphere (TOA) diffuse fluxes depending on the boundary layer aerosol properties. The aerosol radiative forcing (ARF) at the surface changes by 6–19 W m−2, depending on the solar zenith angle, when urban or clean marine particles are included in the boundary layer. The ARF differences observed at TOA are between 1 and 5 W m−2 when urban and clean marine aerosol types in the BL are respectively used, showing a smaller dependency on the solar zenith angle than at the surface.

https://doi.org/10.1016/j.atmosenv.2010.04.041