6533b81ffe1ef96bd12773cf
RESEARCH PRODUCT
Modeling of Dead Wood Potential Based on Tree Stand Data
Panu HalmeNiko LeikolaNinni MikkonenAri LahtinenTopi TanhuanpääEinari Heinarosubject
0106 biological sciencesDECOMPOSITION010504 meteorology & atmospheric sciencesforest simulationForest managementBiodiversityDEBRISECOLOGY010603 evolutionary biology01 natural sciencessuojelusuunnitelmatspatial conservation prioritizationsimulointilahopuutconservation planningMETAANALYSISbiodiversity0105 earth and related environmental sciencesforests4112 ForestrySPECIES RICHNESSmetsänkäsittelyTaigacoarse woody debrisforestryNORWAY SPRUCELand-use planningForestryVegetationlcsh:QK900-98915. Life on landbiodiversiteettimetsiensuojeluTree standlcsh:Plant ecologyEnvironmental scienceGROWTHBIODIVERSITYCoarse woody debrisScale (map)land-use planningdescription
Here we present a framework for identifying areas with high dead wood potential (DWP) for conservation planning needs. The amount and quality of dead wood and dying trees are some of the most important factors for biodiversity in forests. As they are easy to recognize on site, it is widely used as a surrogate marker for ecological quality of forests. However, wall-to-wall information on dead wood is rarely available on a large scale as field data collection is expensive and local dead wood conditions change rapidly. Our method is based on the forest growth models in the Motti forest simulator, taking into account 168 combinations of tree species, site types, and vegetation zones as well as recommendations on forest management. Simulated estimates of stand-level dead wood volume and mean diameter at breast height were converted into DWP functions. The accuracy of the method was validated on two sites in southern and northeastern Finland, both consisting of managed and conserved boreal forests. Altogether, 203 field plots were measured for living and dead trees. Data on living trees were inserted into corresponding DWP functions and the resulting DWPs were compared to the measured dead wood volumes. Our results show that DWP modeling is an operable tool, yet the accuracy differs between areas. The DWP performs best in near-pristine southern forests known for their exceptionally good quality areas. In northeastern areas with a history of softer management, the differences between near-pristine and managed forests is not as clear. While accurate wall-to-wall dead wood inventory is not available, we recommend using DWP method together with other spatial datasets when assessing biodiversity values of forests.
year | journal | country | edition | language |
---|---|---|---|---|
2020-08-20 |