6533b820fe1ef96bd127a3dc

RESEARCH PRODUCT

Proteomic analysis highlights the role of detoxification pathways in increased tolerance to Huanglongbing disease.

David DolanFederico MartinelliAbhaya M. DandekarRussell L. ReaganVeronica Fileccia

subject

Crop and Pasture Production0106 biological sciences0301 basic medicineProteomicsCitrusCandidatus LiberibacterProteomePlant Biology & BotanyCandidatus liberibacterPlant BiologyHuanglongbingPlant ScienceBiologyProteomicsMicrobiology01 natural sciencesTranscriptome03 medical and health sciencesCitrus Huanglongbing Candidatus liberibacter iTRAQ Proteome ProteomicRhizobiaceaeDetoxificationSettore AGR/07 - Genetica AgrariaGenotypePlant DiseasesGeneticsbusiness.industryProteomicbiology.organism_classificationCitrus; Huanglongbing; Candidatus liberibacter; iTRAQ; Proteome; ProteomicBiotechnologyMetabolic pathway030104 developmental biologyiTRAQProteomebusinessCitrus × sinensisMetabolic Networks and Pathways010606 plant biology & botanyCitrus sinensisResearch Article

description

Background Huanglongbing (HLB) disease is still the greatest threat to citriculture worldwide. Although there is not any resistance source in the Citrus germplasm, a certain level of moderated tolerance is present. A large-scale analysis of proteomic responses of Citrus may help: 1) clarifying physiological and molecular effects of disease progression, 2) validating previous data at transcriptomic level, and 3) identifying biomarkers for development of early diagnostics, short-term therapeutics and long-term genetic resistance. Results In this work we have conducted a proteomic analysis of mature leaves of two Citrus genotypes with well-known differing tolerances to HLB: Navel orange (highly susceptible) and Volkameriana (moderately tolerant). Pathway enrichment analysis showed that amino acid degradation processes occurred to a larger degree in the Navel orange. No clear differences between the two genotypes were observed for primary metabolic pathways. The most important finding was that four glutathione-S-transferases were upregulated in Volkameriana and not in Navel orange. These proteins are involved in radical ion detoxification. Conclusions Upregulation of proteins involved in radical ion detoxification should be considered as an important mechanism of increased tolerance to HLB. Electronic supplementary material The online version of this article (doi:10.1186/s12870-016-0858-5) contains supplementary material, which is available to authorized users.

10.1186/s12870-016-0858-5https://pubmed.ncbi.nlm.nih.gov/27465111