6533b821fe1ef96bd127b022

RESEARCH PRODUCT

Thermolytic reverse electrodialysis heat engine: model development, integration and performance analysis

Andrea CipollinaFrancesca ScargialiAlessandro TamburiniLyle GriffinLyle GriffinMaria-chiara FerrariGiorgio MicaleF. GiacaloneF. Vassallo

subject

Work (thermodynamics)Absorption (acoustics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials science020209 energySettore ING-IND/25 - Impianti ChimiciEnergy Engineering and Power Technology02 engineering and technology7. Clean energyStripping (fiber)020401 chemical engineeringReversed electrodialysis0202 electrical engineering electronic engineering information engineering0204 chemical engineeringProcess engineeringHeat engineThermolytic salts Salinity gradient heat engine Regeneration unit Reverse electrodialysis Ammonium bicarbonate solutions Waste heat recoveryRenewable Energy Sustainability and the Environmentbusiness.industry6. Clean waterFuel TechnologyMembraneNuclear Energy and EngineeringExergy efficiencyWorking fluidbusiness

description

Abstract Salinity gradient heat engines represent an innovative and promising way to convert low-grade heat into electricity by employing salinity gradient technology in a closed-loop configuration. Among the aqueous solutions which can be used as working fluid, ammonium bicarbonate-water solutions appear very promising due to their capability to decompose at low temperature. In this work, an experimentally validated model for a reverse electrodialysis heat engine fed with ammonium bicarbonate-water solutions was developed. The model consists of two validated sub-models purposely integrated, one for the reverse electrodialysis unit and the other for the stripping/absorption regeneration unit. The impact of using current commercial membranes and future enhanced membranes on the efficiency of the system was evaluated, along with the effect of operating and design parameters through sensitivity analyses. Results indicated that exergy efficiency up to 8.5% may be obtained by considering enhanced future membranes and multi-column regeneration units.

10.1016/j.enconman.2019.03.045http://dx.doi.org/10.1016/j.enconman.2019.03.045