6533b821fe1ef96bd127c3a6

RESEARCH PRODUCT

Descriptor-type Kalman Filter and TLS EXIN Speed Estimate for Sensorless Control of a Linear Induction Motor.

Marcello PucciGianpaolo VitaleMaurizio CirrincioneFilippo D'ippolitoAntonino SferlazzaFrancesco Alonge

subject

State variableEngineeringObserver (quantum physics)neural networks (NNs)linear induction motor controlLinear Induction Motor (LIM) Kalman Filter Total Least-Squares Neural Networks.Industrial and Manufacturing EngineeringSettore ING-INF/04 - AutomaticaKalman filter (KF)Control theorylinear induction motor (LIM)state estimationElectrical and Electronic EngineeringTotal least squaresAlpha beta filterArtificial neural networkbusiness.industryEstimatorKalman filterLinear motorFlux linkagetotal least squares (TLS)Control and Systems EngineeringLinear induction motorbusinessInduction motor

description

This paper proposes a speed observer for linear induction motors (LIMs), which is composed of two parts: 1) a linear Kalman filter (KF) for the online estimation of the inductor currents and induced part flux linkage components; and 2) a speed estimator based on the total least squares (TLS) EXIN neuron. The TLS estimator receives as inputs the state variables, estimated by the KF, and provides as output the LIM linear speed, which is fed back to the KF and the control system. The KF is based on the classic space-vector model of the rotating induction machine. The end effects of the LIMs have been considered an uncertainty treated by the KF. The TLS EXIN neuron has been used to compute, in recursive form, the machine linear speed online since it is the only neural network able to solve online, in a recursive form, a TLS problem. The proposed KF TLS speed estimator has been tested experimentally on a suitably developed test setup, and it has been compared with the classic extended KF.

10.1109/tia.2014.2316367http://hdl.handle.net/10447/102914