6533b821fe1ef96bd127c3a9
RESEARCH PRODUCT
A Note on Riesz Bases of Eigenvectors of Certain Holomorphic Operator-Functions
Joseph P. Lutgensubject
Dirichlet problemPure mathematicsApplied MathematicsMathematical analysisHolomorphic functionHilbert spaceeigenvectorsoperator-functionRiesz basisSeparable spacesymbols.namesakeDirichlet boundary conditionsymbolsCauchy's integral theoremAnalysisEigenvalues and eigenvectorsMathematicsResolventdescription
Abstract Operator-valued functions of the form A (λ) ≔ A − λ + Q(λ) with λ ↦ Q(λ)(A − μ)− 1 compact-valued and holomorphic on certain domains Ω ⊂ C are considered in separable Hilbert space. Assuming that the resolvent of A is compact, its eigenvalues are simple and the corresponding eigenvectors form a Riesz basis for H of finite defect, it is shown that under certain growth conditions on ‖Q(λ)(A − λ)− 1‖ the eigenvectors of A corresponding to a part of its spectrum also form a Riesz basis of finite defect. Applications are given to operator-valued functions of the form A (λ) = A − λ + B(λ − D)− 1C and to spectral problems in L2(0, 1) of the form −f″(x) + p(x, λ)f′(x) + q(x, λ)f(x) = λf(x) with, for example, Dirichlet boundary conditions.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2001-03-01 | Journal of Mathematical Analysis and Applications |