6533b822fe1ef96bd127d622
RESEARCH PRODUCT
An Introduction to Hodge Structures
Sara Angela FilippiniAlan ThompsonHelge Ruddatsubject
Pure mathematicsHodge theory010102 general mathematicsVector bundleComplex differential form01 natural sciencesPositive formHodge conjectureMathematics::Algebraic Geometryp-adic Hodge theory0103 physical sciences010307 mathematical physics0101 mathematicsHodge dualMathematics::Symplectic GeometryHodge structureMathematicsdescription
We begin by introducing the concept of a Hodge structure and give some of its basic properties, including the Hodge and Lefschetz decompositions. We then define the period map, which relates families of Kahler manifolds to the families of Hodge structures defined on their cohomology, and discuss its properties. This will lead us to the more general definition of a variation of Hodge structure and the Gauss-Manin connection. We then review the basics about mixed Hodge structures with a view towards degenerations of Hodge structures; including the canonical extension of a vector bundle with connection, Schmid’s limiting mixed Hodge structure and Steenbrink’s work in the geometric setting. Finally, we give an outlook about Hodge theory in the Gross-Siebert program.
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 |