6533b822fe1ef96bd127d695

RESEARCH PRODUCT

Ephestia kuehniella tolerance to Bacillus thuringiensis Cry1Aa is associated with reduced oligomer formation

Maissa ChakrounSlim TounsiSouad RouisJuan FerréSameh Sellami

subject

0301 basic medicineProtein ConformationBacillus thuringiensisBiophysicsPeptidemedicine.disease_causeBiochemistryOligomerHemolysin Proteins03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsBacillus thuringiensismedicineAnimalsReceptorMolecular Biologychemistry.chemical_classificationBacillus thuringiensis Toxins030102 biochemistry & molecular biologybiologyToxinfungiCell BiologyLigand (biochemistry)biology.organism_classificationEndotoxinsLepidopteraBlot030104 developmental biologyBiochemistryCry1AcchemistryProtein Multimerization

description

The basis of the different susceptibility of Ephestia kuehniella to the Cry1Aa and Cry1Ac δ-endotoxins from Bacillus thuringiensis kurstaki BNS3 was studied. Both toxins bound specifically to the BBMV of E. kuehniella. The result of the ligand blot showed that Cry1Ac bound to three putative receptors of about 100, 65 and 80 kDa and Cry1Aa interacted only with a 100 kDa protein. Pronase digestion of the BBMV-bound toxins was used to analyze the toxin insertion. Both toxins inserted into the BBMV as monomers however, a 14 kDa peptide of α4-α5 which correspond to the oligomeric form of this peptide was detected in case of Cry1Ac only. Analysis of the in vitro oligomerisation of these toxins in the presence of the BBMV of E. kuehniella showed reduced oligomer formation in case of Cry1Aa in comparison with Cry1Ac. Taken together, these results strongly suggest that the difference of toxicity between Cry1Aa and Cry1Ac to E. kuehniella is due to a deficient oligomerisation of Cry1Aa.

https://doi.org/10.1016/j.bbrc.2016.11.115