6533b823fe1ef96bd127e3b2

RESEARCH PRODUCT

Successive specification ofDrosophilaneuroblasts NB 6-4 and NB 7-3 depends on interaction of the segment polarity geneswingless,gooseberryandnaked cuticle

Rainer DittrichJoachim UrbanGerhard M. TechnauNirupama Deshpande

subject

Central Nervous SystemTime FactorsCellular differentiationWnt1 ProteinBiologyCell fate determinationNeuroblastProto-Oncogene ProteinsAnimalsDrosophila ProteinsHedgehog ProteinsMolecular BiologyBody PatterningHomeodomain ProteinsNeuronsGeneticsNeuroectodermStem CellsNeurogenesisNuclear ProteinsCell DifferentiationengrailedCell biologyDNA-Binding ProteinsNaked cuticleDrosophila melanogasterSegment polarity geneembryonic structuresTrans-ActivatorsInsect ProteinsTranscription FactorsDevelopmental Biology

description

The Drosophila central nervous system derives from neural precursor cells, the neuroblasts (NBs), which are born from the neuroectoderm by the process of delamination. Each NB has a unique identity, which is revealed by the production of a characteristic cell lineage and a specific set of molecular markers it expresses. These NBs delaminate at different but reproducible time points during neurogenesis (S1-S5) and it has been shown for early delaminating NBs (S1/S2) that their identities depend on positional information conferred by segment polarity genes and dorsoventral patterning genes. We have studied mechanisms leading to the fate specification of a set of late delaminating neuroblasts, NB 6-4 and NB 7-3, both of which arise from the engrailed (en) expression domain, with NB 6-4 delaminating first. In contrast to former reports, we did not find any evidence for a direct role of hedgehog in the process of NB 7-3 specification. Instead, we present evidence to show that the interplay of the segmentation genes naked cuticle (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment to NB 6-4 and NB 7-3 cell fate. In the absence of either nkd or gsb, one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.

https://doi.org/10.1242/dev.128.17.3253