6533b823fe1ef96bd127e3bb
RESEARCH PRODUCT
Event-by-event fluctuations in a perturbative QCD plus saturation plus hydrodynamics model : Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions
Harri NiemiHarri NiemiHarri NiemiKari J. EskolaKari J. EskolaRisto PaatelainenRisto PaatelainenRisto Paatelainensubject
PB-PB COLLISIONSMULTIPLICITIES01 natural sciences114 Physical sciencesGLUON DISTRIBUTION-FUNCTIONSquantum chromodynamicshydrodynamics model0103 physical sciencesFluid dynamics010306 general physicsNuclear ExperimentTRANSVERSE ENERGIESKINETIC-THEORYQCD matterPhysicsta114010308 nuclear & particles physicsDISSIPATIVE FLUID-DYNAMICSELLIPTIC FLOWShear viscosityElliptic flowHigh Energy Physics::PhenomenologyPerturbative QCDheavy-ion collisionsCENTRALITY DEPENDENCEFREEZE-OUTShear (geology)Quantum electrodynamicsRELATIVISTIC NUCLEAR COLLISIONSQuark–gluon plasmaDissipative systemdescription
We introduce an event-by-event perturbative-QCD + saturation + hydro ("EKRT") framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading-order perturbative QCD using a saturation conjecture to control soft-particle production and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow and event-plane angle correlations with the experimental data from Pb + Pb collisions at the LHC. We show how such a systematic multienergy and multiobservable analysis tests the initial-state calculation and the applicability region of hydrodynamics and, in particular, how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner. Peer reviewed
year | journal | country | edition | language |
---|---|---|---|---|
2016-02-10 |