6533b823fe1ef96bd127ed4b
RESEARCH PRODUCT
Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization
Gustau Camps-vallsDiego MarcosDevis Tuiasubject
Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesHyperspectral imagingComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesNormalization (image processing)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesLaboratory of Geo-information Science and Remote SensingComputer vision910 Geography & travelMathematicsDomain adaptationContextual image classificationImage and Video Processing (eess.IV)1903 Computers in Earth SciencesPE&RCClassificationAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel method10122 Institute of GeographyKernel (image processing)Feature extractionFeature extractionVery high resolutionGraph-based methods1706 Computer Science ApplicationsFOS: Electrical engineering electronic engineering information engineeringLaboratorium voor Geo-informatiekunde en Remote SensingComputers in Earth SciencesElectrical Engineering and Systems Science - Signal ProcessingEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingManifold alignmentbusiness.industryNonlinear dimensionality reductionHistogram matchingKernel methodsPattern recognitionElectrical Engineering and Systems Science - Image and Video ProcessingManifold learningArtificial intelligence2201 Engineering (miscellaneous)businessdescription
Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corresponding band to be matched between the images. An alternative builds upon \emph{manifold alignment}. Manifold alignment performs a multidimensional relative normalization of the data prior to product generation that can cope with data of different dimensionality (e.g. different number of bands) and possibly unpaired examples. Aligning data distributions is an appealing strategy, since it allows to provide data spaces that are more similar to each other, regardless of the subsequent use of the transformed data. In this paper, we study a methodology that aligns data from different domains in a nonlinear way through {\em kernelization}. We introduce the Kernel Manifold Alignment (KEMA) method, which provides a flexible and discriminative projection map, exploits only a few labeled samples (or semantic ties) in each domain, and reduces to solving a generalized eigenvalue problem. We successfully test KEMA in multi-temporal and multi-source very high resolution classification tasks, as well as on the task of making a model invariant to shadowing for hyperspectral imaging.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2016-01-01 | ISPRS Journal of Photogrammetry and Remote Sensing |