6533b824fe1ef96bd128013a
RESEARCH PRODUCT
Learning With Context Feedback Loop for Robust Medical Image Segmentation
Alain LalandeGilles CréhangeKibrom Berihu Girumsubject
FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)Feature vectorComputer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONContext (language use)Convolutional neural networkMachine Learning (cs.LG)Feedback030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineFOS: Electrical engineering electronic engineering information engineeringImage Processing Computer-Assisted[INFO.INFO-IM]Computer Science [cs]/Medical ImagingSegmentationElectrical and Electronic EngineeringComputingMilieux_MISCELLANEOUSRadiological and Ultrasound TechnologyPixelbusiness.industryDeep learningImage and Video Processing (eess.IV)Pattern recognitionImage segmentationElectrical Engineering and Systems Science - Image and Video ProcessingFeedback loopComputer Science ApplicationsFeature (computer vision)Neural Networks ComputerArtificial intelligencebusinessSoftwaredescription
Deep learning has successfully been leveraged for medical image segmentation. It employs convolutional neural networks (CNN) to learn distinctive image features from a defined pixel-wise objective function. However, this approach can lead to less output pixel interdependence producing incomplete and unrealistic segmentation results. In this paper, we present a fully automatic deep learning method for robust medical image segmentation by formulating the segmentation problem as a recurrent framework using two systems. The first one is a forward system of an encoder-decoder CNN that predicts the segmentation result from the input image. The predicted probabilistic output of the forward system is then encoded by a fully convolutional network (FCN)-based context feedback system. The encoded feature space of the FCN is then integrated back into the forward system's feed-forward learning process. Using the FCN-based context feedback loop allows the forward system to learn and extract more high-level image features and fix previous mistakes, thereby improving prediction accuracy over time. Experimental results, performed on four different clinical datasets, demonstrate our method's potential application for single and multi-structure medical image segmentation by outperforming the state of the art methods. With the feedback loop, deep learning methods can now produce results that are both anatomically plausible and robust to low contrast images. Therefore, formulating image segmentation as a recurrent framework of two interconnected networks via context feedback loop can be a potential method for robust and efficient medical image analysis.
year | journal | country | edition | language |
---|---|---|---|---|
2021-06-01 |