6533b824fe1ef96bd128091c

RESEARCH PRODUCT

Surface Coatings Based on Polysilsesquioxanes: Solution-Processible Smooth Hole-Injection Layers for Optoelectronic Applications

Seunguk NohMaria C. LechmannJochen S. GutmannPatrick TheatoPatrick TheatoRüdiger BergerDaniel KesslerChanghee Lee

subject

Electron mobilityMaterials sciencePolymers and Plasticsbusiness.industryPhotoconductivityOrganic ChemistryAnodeContact angleChemical-mechanical planarizationElectrodeMaterials ChemistryOptoelectronicsbusinessLayer (electronics)Transparent conducting film

description

Optoelectronic devices usually consist of a transparent conductive oxide (TCO) as one electrode. Interfacial engineering between the TCO electrode and the overlying organic layers is an important method for tuning device performance. We introduce poly(methylsilsesquioxane)-poly(N,N-di-4-methylphenylamino styrene) (PMSSQ-PTPA) as a potential hole-injection layer forming material. Spin-coating and thermally induced crosslinking resulted in an effective planarization of the anode interface. HOMO level (-5.6 eV) and hole mobility (1 × 10(-6)  cm(2)  · Vs(-1) ) of the film on ITO substrates were measured by cyclovoltammetry and time-of-flight measurement demonstrating the hole injection capability of the layer. Adhesion and stability for further multilayer built-up could be demonstrated. Contact angle measurements and tape tests after several solvent treatments proved the outstanding film stability.

https://doi.org/10.1002/marc.200900196