6533b824fe1ef96bd1280a4c
RESEARCH PRODUCT
Stability and l1-gain analysis for positive 2D T–S fuzzy state-delayed systems in the second FM model
Zhaoxia DuanZhengrong XiangHamid Reza Karimisubject
Positive 2D systemsLyapunov functionT-S fuzzy systemsCognitive NeuroscienceLinear systemLinear matrix inequalityDelay-dependent stabilityComputer Science Applications1707 Computer Vision and Pattern RecognitionFuzzy control systemState (functional analysis)Fuzzy logicStability (probability)Computer Science Applicationssymbols.namesakeArtificial IntelligenceControl theorysymbolsCo-positive type Lyapunov functionFuzzy numberCo-positive type Lyapunov function; Delay-dependent stability; Positive 2D systems; T-S fuzzy systems; Computer Science Applications1707 Computer Vision and Pattern Recognition; Cognitive Neuroscience; Artificial IntelligenceMathematicsdescription
This paper considers the problems of delay-dependent stability and l"1-gain analysis for a class of positive two-dimensional (2D) Takagi-Sugeno (T-S) fuzzy linear systems with state delays described by the second FM model. Firstly, the co-positive type Lyapunov function method is applied to establish sufficient conditions of asymptotical stability for the addressed positive 2D T-S fuzzy system. Then, the l"1-gain performance analysis for the positive 2D T-S fuzzy delayed system is studied. All the obtained results are formulated in the form of linear matrix inequalities (LMIs) which are computationally tractable. Finally, an illustrative example is given to verify the effectiveness of the proposed method.
year | journal | country | edition | language |
---|---|---|---|---|
2014-10-01 | Neurocomputing |