6533b824fe1ef96bd128153a

RESEARCH PRODUCT

Antipredator strategies of pupae: how to avoid predation in an immobile life stage?

Liam MurphyJohanna MappesCarita Lindstedt

subject

0106 biological sciencespupal defencesuojautuminenFood ChainInsectaZoologyBiologyEnvironment010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyPredation03 medical and health sciencestoukatAnimalsprotective colorationpuolustusmekanismit (biologia)Selection Genetic030304 developmental biologysuojaväri0303 health sciencesLarvasaaliseläimetchemical defencephysical defencefungiPupapredator–prey interactionsArticlesLife stagePupahyönteisetGeneral Agricultural and Biological Sciences

description

Antipredator strategies of the pupal stage in insects have received little attention in comparison to larval or adult stages. This is despite the fact that predation risk can be high during the pupal stage, making it a critical stage for subsequent fitness. The immobile pupae are not, however, defenceless; a wide range of antipredator strategies have evolved against invertebrate and vertebrate predators. The most common strategy seems to be ‘avoiding encounters with predators' by actively hiding in vegetation and soil or via cryptic coloration and masquerade. Pupae have also evolved behavioural and secondary defences such as defensive toxins, physical defences or deimatic movements and sounds. Interestingly, warning coloration used to advertise unprofitability has evolved very rarely, even though the pupal stage often contains defensive toxins in chemically defended species. In some species, pupae gain protection from conspecifics or mimic chemical and auditory signals and thereby manipulate other species to protect them. Our literature survey highlights the importance of studying selection pressures across an individual's life stages to predict how ontogenetic variation in selective environments shapes individual fitness and population dynamics in insects. Finally, we also suggest interesting avenues for future research to pursue. This article is part of the theme issue ‘The evolution of complete metamorphosis’.

10.1098/rstb.2019.0069https://pubmed.ncbi.nlm.nih.gov/31438812