6533b825fe1ef96bd1281f20
RESEARCH PRODUCT
Genome-Wide Inhibition of Pro-atherogenic Gene Expression by Multi-STAT Targeting Compounds as a Novel Treatment Strategy of CVDs.
Martyna Plens-galaskaMalgorzata SzelagAida ColladoAida ColladoPatrice MarquesPatrice MarquesSusana VallejoSusana VallejoMariella Ramos-gonzálezMariella Ramos-gonzálezJoanna WesolyMaría Jesus SanzMaría Jesus SanzPeiróconcepciónConcepción PeiróHans A. R. Bluyssensubject
lcsh:Immunologic diseases. Allergy0301 basic medicineMaleIn silicoImmunologyGene ExpressionBiologystatIn silico dockingCell LineSmall Molecule Librariessrc Homology Domains03 medical and health sciencesCVDs treatment strategyImmunology and AllergyAnimalsHumansvascular inflammationSTAT1STAT2STAT3Vascular inflammationCells CulturedOriginal ResearchOxadiazolesGene Expression ProfilingSTATPattern recognition receptorin silico dockingFarmaciaAtherosclerosisCyclic S-OxidesMice Inbred C57BLSTAT Transcription Factors030104 developmental biologyCardiovascular DiseasesTLR4biology.proteinSTAT proteinCancer researchQuinolinesmulti-STAT inhibitorsMulti-STAT inhibitorslcsh:RC581-607Genome-Wide Association StudySignal Transductiondescription
Cardiovascular diseases (CVDs), including atherosclerosis, are globally the leading cause of death. Key factors contributing to onset and progression of atherosclerosis include the pro-inflammatory cytokines Interferon (IFN)a and IFN? and the Pattern Recognition Receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT)s. Searches for compounds targeting the pTyr-SH2 interaction area of STAT3, yielded many small molecules, including STATTIC and STX-0119. However, many of these inhibitors do not seem STAT3-specific. We hypothesized that multi-STAT-inhibitors that simultaneously block STAT1, STAT2, and STAT3 activity and pro-inflammatory target gene expression may be a promising strategy to treat CVDs. Using comparative in silico docking of multiple STAT-SH2 models on multi-million compound libraries, we identified the novel multi-STAT inhibitor, C01L-F03. This compound targets the SH2 domain of STAT1, STAT2, and STAT3 with the same affinity and simultaneously blocks their activity and expression of multiple STAT-target genes in HMECs in response to IFNa. The same in silico and in vitro multi-STAT inhibiting capacity was shown for STATTIC and STX-0119. Moreover, C01L-F03, STATTIC and STX-0119 were also able to affect genome-wide interactions between IFN? and TLR4 by commonly inhibiting pro-inflammatory and pro-atherogenic gene expression directed by cooperative involvement of STATs with IRFs and/or NF-κB. Moreover, we observed that multi-STAT inhibitors could be used to inhibit IFN?+LPS-induced HMECs migration, leukocyte adhesion to ECs as well as impairment of mesenteric artery contractility. Together, this implicates that application of a multi-STAT inhibitory strategy could provide great promise for the treatment of CVDs
year | journal | country | edition | language |
---|---|---|---|---|
2018-09-01 | Frontiers in immunology |