6533b825fe1ef96bd1281fc2

RESEARCH PRODUCT

Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel

Carmina Verdiá-báguenaJavier CerveraSalvador MafeVicente GomezPatricio Ramirez

subject

0301 basic medicineLipid BilayersPorinsGeneral Physics and AstronomyNanotechnology02 engineering and technologyMolecular physicsIon Channelslaw.invention03 medical and health scienceslawElectric fieldEscherichia coliPhysical and Theoretical ChemistryLipid bilayerIon channelbiologyChemistryCell MembraneElectric Conductivity021001 nanoscience & nanotechnologybiology.organism_classificationCapacitor030104 developmental biologyMembraneFISICA APLICADASignal averagingNanodiodes0210 nano-technologyBacterial Outer Membrane ProteinsVoltage

description

[EN] We demonstrate the electrical rectification and signal averaging of fluctuating signals using a biological nanostructure in aqueous solution: a single protein ion channel inserted in the lipid bilayer characteristic of cell membranes. The conversion of oscillating, zero time-average potentials into directional currents permits charging of a load capacitor to significant steady-state voltages within a few minutes in the case of the outer membrane porin F (OmpF) protein, a bacterial channel of Escherichia coli. The experiments and simulations show signal averaging effects at a more fundamental level than the traditional cell and tissue scales, which are characterized by ensembles of many ion channels operating simultaneously. The results also suggest signal transduction schemes with bio-electronic interfaces and ionic circuits where soft matter nanodiodes can be coupled to conventional electronic elements.

https://doi.org/10.1039/c6cp06035h