6533b825fe1ef96bd1282452
RESEARCH PRODUCT
Evaluation of interpolation methods for TG-43 dosimetric parameters based on comparison with Monte Carlo data for high-energy brachytherapy sources.
M. C. Pujades-claumarchirantD. GraneroJ. Perez-calatayudFacundo BallesterC. MelhusM. Rivardsubject
dosimetry2D anisotropy functionlcsh:Rbrachytherapylcsh:MedicineOriginal ArticleTG-43interpolationradial dose functiondescription
Purpose The aim of this work was to determine dose distributions for high-energy brachytherapy sources at spatial locations not included in the radial dose function gL(r) and 2D anisotropy function F(r,θ) table entries for radial distance r and polar angle θ. The objectives of this study are as follows: 1) to evaluate interpolation methods in order to accurately derive gL(r) and F(r,θ) from the reported data; 2) to determine the minimum number of entries in gL(r) and F(r,θ) that allow reproduction of dose distributions with sufficient accuracy. Material and methods Four high-energy photon-emitting brachytherapy sources were studied: 60Co model Co0.A86, 137Cs model CSM-3, 192Ir model Ir2.A85-2, and 169Yb hypothetical model. The mesh used for r was: 0.25, 0.5, 0.75, 1, 1.5, 2–8 (integer steps) and 10 cm. Four different angular steps were evaluated for F(r,θ): 1°, 2°, 5° and 10°. Linear-linear and logarithmic-linear interpolation was evaluated for gL(r). Linear-linear interpolation was used to obtain F(r,θ) with resolution of 0.05 cm and 1°. Results were compared with values obtained from the Monte Carlo (MC) calculations for the four sources with the same grid. Results Linear interpolation of g L(r) provided differences ≤ 0.5% compared to MC for all four sources. Bilinear interpolation of F(r,θ) using 1° and 2° angular steps resulted in agreement ≤ 0.5% with MC for 60Co, 192Ir, and 169Yb, while 137Cs agreement was ≤ 1.5% for θ < 15°. Conclusions The radial mesh studied was adequate for interpolating gL(r) for high-energy brachytherapy sources, and was similar to commonly found examples in the published literature. For F(r,θ) close to the source longitudinal-axis, polar angle step sizes of 1°-2° were sufficient to provide 2% accuracy for all sources.
year | journal | country | edition | language |
---|---|---|---|---|
2010-04-01 | Journal of contemporary brachytherapy |