6533b825fe1ef96bd12827fc

RESEARCH PRODUCT

Strongly Coupled Cyclometalated Ruthenium Triarylamine Chromophores as Sensitizers for DSSCs

Katja HeinzeAndreas K. C. MengelTae Kyung LeeWoohyung ChoKookheon CharChristoph KreitnerYong Soo Kang

subject

chemistry.chemical_classification010405 organic chemistryChemistryOrganic ChemistryCenter (category theory)chemistry.chemical_elementGeneral ChemistryTricarboxylic acidChromophore010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistryCatalysis0104 chemical sciencesRutheniumMetalBipyridinechemistry.chemical_compoundDye-sensitized solar cellvisual_artvisual_art.visual_art_mediumCobalt

description

A series of anchor-functionalized cyclometalated bis(tridentate) ruthenium(II) triarylamine hybrids [Ru(dbp-X)(tctpy)](2-) [2 a](2-) -[2 c](2-) (H3 tctpy=2,2';6',2''-terpyridine-4,4',4''-tricarboxylic acid; dpbH=1,3-dipyridylbenzene; X=N(4-C6 H4 OMe)2 ([2 a](2-) ), NPh2 ([2 b](2-) ), N-carbazolyl [2 c](2-) ) was synthesized and characterized. All complexes show broad absorption bands in the range 300-700 nm with a maximum at about 545 nm. Methyl esters [Ru(Me3 tctpy)(dpb-X)](+) [1 a](+) -[1 c](+) are oxidized to the strongly coupled mixed-valent species [1 a](2+) -[1 c](2+) and the Ru(III) (aminium) complexes [1 a](3+) -[1 c](3+) at comparably low oxidation potentials. Theoretical calculations suggest an increasing spin delocalization between the metal center and the triarylamine unit in the order [1 a](2+) <[1 b](2+) <[1 c](2+) . Solar cells were prepared with the saponified complexes [2 a](2-) -[2 c](2-) and the reference dye N719 as sensitizers using the I3 (-) /I(-) couple and [Co(bpy)3 ](3+/2+) and [Co(ddpd)2 ](3+/2+) couples as [B(C6 F5 )4 ](-) salts as electrolytes (bpy=2,2'-bipyridine; ddpd=N,N'-dimethyl-N,N'-dipyridin-2-yl-pyridine-2,6-diamine). Cells with [2 c](2-) and I3 (-) /I(-) electrolyte perform similarly to cells with N719. In the presence of cobalt electrolytes, all efficiencies are reduced, yet under these conditions [2 c](2-) outperforms N719.

https://doi.org/10.1002/chem.201601001