6533b825fe1ef96bd1282af4
RESEARCH PRODUCT
A Meshfree Solver for the MEG Forward Problem
Michael MccourtGuido AlaGregory E. FasshauerSalvatore GanciElisa Francomanosubject
Computer scienceBiomagnetics magnetoencephalography (MEG) method of fundamental solutions (MFS) meshfree methodsScalar potentialInverse problemSolverBoundary knot methodElectronic Optical and Magnetic MaterialsSettore ING-IND/31 - ElettrotecnicaSettore MAT/08 - Analisi NumericaClassical mechanicsApplied mathematicsMethod of fundamental solutionsBoundary value problemElectrical and Electronic EngineeringBoundary element methoddescription
Noninvasive estimation of brain activity via magnetoencephalography (MEG) involves an inverse problem whose solution requires an accurate and fast forward solver. To this end, we propose the Method of Fundamental Solutions (MFS) as a meshfree alternative to the Boundary Element Method (BEM). The solution of the MEG forward problem is obtained, via the Method of Particular Solutions (MPS), by numerically solving a boundary value problem for the electric scalar potential, derived from the quasi-stationary approximation of Maxwell’s equations. The magnetic field is then computed by the Biot-Savart law. Numerical experiments have been carried out in a realistic single-shell head geometry. The proposed solver is compared with a state-of-the-art BEM solver. A good agreement and a reduced computational load show the attractiveness of the meshfree approach.
year | journal | country | edition | language |
---|---|---|---|---|
2015-03-01 |