6533b825fe1ef96bd1283341
RESEARCH PRODUCT
Event-Driven Simulation of the Dynamics of Hard Ellipsoids
Cristiano De MicheleRolf SchillingFrancesco SciortinoMichio TokuyamaIrwin OppenheimHideya Nishiyamasubject
Physicsnematic orderhard ellipsoidsCondensed Matter - Materials SciencePlane (geometry)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesContext (language use)Decoupling (cosmology)mode coupling theoryCondensed Matter - Soft Condensed MatterAtomic packing factorEllipsoidcomputer simulation; glass transition; hard ellipsoids; mode coupling theory; nematic orderMolecular dynamicsClassical mechanicsPerpendicularcomputer simulationRelaxation (physics)Soft Condensed Matter (cond-mat.soft)glass transitiondescription
We introduce a novel algorithm to perform event-driven simulations of hard rigid bodies of arbitrary shape, that relies on the evaluation of the geometric distance. In the case of a monodisperse system of uniaxial hard ellipsoids,we perform molecular dynamics simulations varying the aspect-ratio X0 and the packing fraction phi. We evaluate the translational Dtrans and the rotational Drot diffusion coefficient and the associated isodiffusivity lines in the phi-X0 plane. We observe a decoupling of the translational and rotational dynamics which generates an almost perpendicular crossing of the Dtrans and Drot isodiffusivity lines. While the self intermediate scattering function exhibits stretched relaxation, i.e. glassy dynamics, only for large phi and X0 about equals to 1, the second order orientational correlator C2(t) shows stretching only for large and small X0 values. We discuss these findings in the context of a possible pre-nematic order driven glass transition.
year | journal | country | edition | language |
---|---|---|---|---|
2008-01-01 |