6533b826fe1ef96bd1283dee
RESEARCH PRODUCT
Experimental Tests and FEM Model for SFRC Beams under Flexural and Shear Loads
Piero ColajanniLidia La MendolaSalvatore PrioloNino SpinellaAdolfo SantiniNicola Moracisubject
Modified Compression Field TheoryMaterials scienceSFRC beamsbusiness.industryShearStructural engineeringFiber-reinforced concreteNonlinear finite element analysisFinite element methodlaw.inventionStress fieldfiber-reinforced concretePhysics and Astronomy (all)Settore ICAR/09 - Tecnica Delle Costruzionishear and flexureShear; SFRC beamsFlexural strengthShear (geology)lawExperimental testUltimate tensile strengthComposite materialbusinessFEM analysidescription
The complete load-vs-displacement curves obtained by four-point-bending tests on Steel Fiber Reinforced Concrete (SFRC) beams are predicted by using a nonlinear finite element code based on the Modified Compression Field Theory (MCFT) and the Disturbed Stress Field Model (DSFM) suitably adapted for SFRC elements. The effect of fibers on the shear-flexure response is taken into account, mainly incorporating tensile stress-strain analytical relationship for SFRC. The numerical results show the effectiveness of the model for prediction of the behavior of the tested specimens reinforced with light amount of stirrups or with fibers only. © 2008 American Institute of Physics.
year | journal | country | edition | language |
---|---|---|---|---|
2008-01-01 | AIP Conference Proceedings |