6533b826fe1ef96bd1283ef5

RESEARCH PRODUCT

An intermediate γ beta-beam neutrino experiment with long baseline

Davide MeloniSilvia PascoliSergio Palomares-ruizOlga MenaChristopher Orme

subject

AstrofísicaPhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsPhase (waves)FOS: Physical sciencesOrder (ring theory)hep-phType (model theory)7. Clean energy01 natural sciencesHigh Energy Physics - PhenomenologyLorentz factorsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencessymbolsSensitivity (control systems)Neutrino010306 general physicsNeutrino oscillation

description

In order to address some fundamental questions in neutrino physics a wide, future programme of neutrino oscillation experiments is currently under discussion. Among those, long baseline experiments will play a crucial role in providing information on the value of theta13, the type of neutrino mass ordering and on the value of the CP-violating phase delta, which enters in 3-neutrino oscillations. Here, we consider a beta-beam setup with an intermediate Lorentz factor gamma=450 and a baseline of 1050 km. This could be achieved in Europe with a beta-beam sourced at CERN to a detector located at the Boulby mine in the United Kingdom. We analyse the physics potential of this setup in detail and study two different exposures (1 x 10^{21} and 5 x 10^{21} ions-kton-years). In both cases, we find that the type of neutrino mass hierarchy could be determined at 99% CL, for all values of delta, for sin^2(2 theta13) > 0.03. In the high-exposure scenario, we find that the value of the CP-violating phase delta could be measured with a 99% CL error of ~20 deg if sin^2 (2 theta13) > 10^{-3}, with some sensitivity down to values of sin^2(2 theta13) ~ 10^{-4}. The ability to determine the octant of theta23 is also studied, and good prospects are found for the high-statistics scenario.

https://doi.org/10.1088/1126-6708/2008/07/115