6533b827fe1ef96bd1285f2f

RESEARCH PRODUCT

A new frontier in novelty detection: Pattern recognition of stochastically episodic events

Colin BellingerB. John Oommen

subject

VDP::Mathematics and natural science: 400::Information and communication science: 420::Knowledge based systems: 425

description

Published version of an article from the book: Intelligent Information and Database Systems, Lecture Notes in Computer Science. Also available from the publisher on SpringerLink:http://dx.doi.org/10.1007/978-3-642-20039-7_44 A particularly challenging class of PR problems in which the, generally required, representative set of data drawn from the second class is unavailable, has recently received much consideration under the guise of One-Class (OC) classification. In this paper, we extend the frontiers of OC classification by the introduction of a new field of problems open for analysis. In particular, we note that this new realm deviates from the standard set of OC problems based on the following characteristics: The data contains a temporal nature, the instances of the classes are “interwoven”, and the labelling procedure is not merely impractical - it is almost, by definition, impossible, which results in a poorly defined training set. As a first attempt to tackle these problems, we present two specialized classification strategies denoted by Scenarios S 1 and S 2 respectively. In Scenarios S 1, the data is such that standard binary and one-class classifiers can be applied. Alternatively, in Scenarios S 2, the labelling challenge prevents the application of binary classifiers, and instead, dictates a novel application of OC classifiers. The validity of these scenarios has been demonstrated for the exemplary domain involving the Comprehensive Nuclear Test-Ban-Treaty (CTBT), for which our research endeavour has also developed a simulation model. As far as we know, our research in this field is of a pioneering sort, and the results presented here are novel.

http://hdl.handle.net/11250/137886