6533b827fe1ef96bd1286688

RESEARCH PRODUCT

Multimodal 2D Image to 3D Model Registration via a Mutual Alignment of Sparse and Dense Visual Features

Olivier MorelDavid FofiCédric DemonceauxNathan CrombezRalph Seulin

subject

Computer sciencebusiness.industryFeature extraction[INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO][ INFO.INFO-RB ] Computer Science [cs]/Robotics [cs.RO][INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020207 software engineering3d model02 engineering and technologySolid modeling[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Visualization[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]0202 electrical engineering electronic engineering information engineeringRobot[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]020201 artificial intelligence & image processingComputer visionArtificial intelligencebusiness

description

International audience; Many fields of application could benefit from an accurate registration of measurements of different modalities over a known 3D model. However, aligning a 2D image to a 3D model is a challenging task and is even more complex when the two have a different modality. Most of the 2D/3D registration methods are based on either geometric or dense visual features. Both have their own advantages and their own drawbacks. We propose, in this paper, to mutually exploit the advantages of one feature type to reduce the drawbacks of the other one. For this, an hybrid registration framework has been designed to mutually align geometrical and dense visual features in order to obtain an accurate final 2D/3D alignment. We evaluate and compare the proposed registration method on real data acquired by a robot equipped with several visual sensors. The results highlights the robustness of the method and its ability to produce wide convergence domain and a high registration accuracy.

https://hal.archives-ouvertes.fr/hal-01779176/file/MultiModRegICRA18_FV.pdf