6533b827fe1ef96bd1286713
RESEARCH PRODUCT
Bochner-Riesz means of functions in weak-L p
Leonardo ColzaniMarco VignatiGiancarlo Travaglinisubject
General MathematicsMathematical analysisFourier-Hankel expansionweak-$L\sp p$test functionBochner-Riesz meanradial functionCombinatoricssymbols.namesakeFourier transformLorentz spacesNorm (mathematics)Fourier transformsymbolsCritical indexFourier-Bessel expansionMAT/05 - ANALISI MATEMATICAMathematicsdescription
The Bochner-Riesz means of order delta greater-than-or-equal-to 0 for suitable test functions on R(N) are defined via the Fourier transform by (S(R)(delta)f)(xi) = (1 - \xi\2/R2)+(delta)f(xi). We show that the means of the critical index delta = N/P - N + 1/2, 1 + infinity, to f(x) in norm and for almost every x in R(N). We also observe that the means of the function absolute value of x-N/p, which belongs to L(p,infinity) (R(N)) but not to the closure of test functions, converge for no x
year | journal | country | edition | language |
---|---|---|---|---|
1993-03-01 | Monatshefte f�r Mathematik |