6533b827fe1ef96bd1286ba4
RESEARCH PRODUCT
Ecology of N2O reducing bacteria in arable soils
Luiz A. Domeignoz Hortasubject
[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesNitrous oxideNitrogenAzoteNosZGreenhouse gasL'oxyde nitreuxMicrobial ecology[SDE.BE] Environmental Sciences/Biodiversity and EcologyAgricultural practicesLa dénitrificationDenitrificationLes pratiques agricoles[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyÉcologie microbienneGaz à effet de serredescription
Nitrous oxide (N2O) is an important greenhouse gas (GHG) and the main ozone depleting substance. Agricultural soils are the main anthropogenic-induced source of this GHG. The concentration of N2O in the atmosphere is steadily increasing, but we still lack knowledge on the factors controlling its production and consumption in soils. The reduction of N2O to N2 by microorganisms harboring the N2O reductase gene (nosZ) is the only known biological process able to consume this GHG. Recent studies revealed a previously unknown clade of N2O-reducers which was shown to be important to the N2O sink capacity of soils. This thesis seeks to gain a greater understanding on the ecology of N2O-reducers in agricultural soils. A combination of laboratory incubation and field experiments were used to gain knowledge on the importance of N2O-producers and N2O-reducers to the soil N2O production. Additionally, the potential of agricultural practices to modify those microbial communities were assessed.We showed experimentally, in laboratory incubations, that the addition of a non-denitrifying strain Dyadobacter fermentans, which possesses the previously unaccounted N2O reductase NosZII, reduced N2O production in 1/3 of the tested soils. Remarkably, after addition of the nosZII strain, some soils became a N2O sink, as negative rates were recorded. This experiment provided unambiguous evidence that the overlooked non-denitrifying nosZII bacteria can contribute to N2O consumption in soil.Our evaluation of agricultural field experiments showed limited impact of agricultural practices on the microbial communities except for tillage management, and differences observed between an annual and a perennial cropping system. Increasing tillage management enhanced nosZII diversity. Higher diversity of the nosZII clade was also observed in the annual cropping system than in the perennial cropping system. Overall, the recently identified clade of N2O-reducers was more sensitive to environmental variables than the previously known clade (nosZI). The community structure of these two groups was explained by common and uncommon soil properties suggesting niche specialization between the two N2O-reducers.In an attempt to understand the relationship between the microbial communities and process rates, we assessed the potential denitrification and nitrification rates, and in situ N2O emissions. Potential N2O production and potential denitrification activity were used to calculate the denitrification end-product ratio. The diversity of nosZII was negatively related to the N2O:N2 ratio and explained the highest fraction of its variation (26%), while the potential N2O production and potential denitrification activity were mainly explained by the soil properties. To better evaluate the contribution of different factors to the in situ emissions, more than 70000 N2O measurements were subdivided into different ranges, from low to high rates. Interestingly, the low range of in situ N2O emissions was only related to soil pH, while the high ranges were also strongly related to the microbial communities. This result suggests that the “base-line” N2O emissions might be more regulated by soil edaphic conditions than by microorganisms, the lasts being more important for the high emissions ranges. Among the significant microbial variables, we found that the diversity of nosZII was negatively related to the high ranges of in situ N2O emissions.In conclusion, our results highlight the relevance of the second clade of N2O-reducers to the fate of N2O in soil. Our results also suggest niche differentiation between the two N2O-reducing clades with nosZII being more responsive to environmental variables. Agricultural practices showed limited impact on the two guilds. Further research is needed to test the niche specialization between the two groups, to disentangle their controlling factors, and to evaluate their potential for N2O mitigation.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2016-01-01 |