6533b827fe1ef96bd1286db8
RESEARCH PRODUCT
Metallic interconnects for solid oxide fuel cell: Performance of reactive element oxide coating during long time exposure
Sébastien ChevalierGilles CabocheSébastien Fontanasubject
Materials scienceMechanical EngineeringMetallurgyAlloyMetals and AlloysOxideGeneral MedicineChemical vapor depositionengineering.materialSurfaces Coatings and FilmsCorrosionMetalchemistry.chemical_compoundchemistryCoatingMechanics of Materialsvisual_artMaterials Chemistryengineeringvisual_art.visual_art_mediumEnvironmental ChemistrySolid oxide fuel cellLayer (electronics)description
One of challenges in improving the performance and cost-effectiveness of SOFCs (solid oxide fuel cells) is the development of suitable interconnects materials. Chromia-forming alloys and especially ferritic stainless steels, like Crofer22APU, are considered to be among the most promising candidate materials as interconnects in SOFC stacks. However, the performance of chromia-forming materials can be limited by the low electronic conductivity of the oxide scale (high ASR – area specific resistance – value). Such degradation are unacceptable regarding the long-term operation (>40 000 h). A previous study 1 demonstrated that in air, the addition of a nanometric reactive element oxide (La2O3) layer applied by metal organic chemical vapor deposition (MOCVD) drastically improved both corrosion rate and electrical properties of Crofer22APU and Haynes230 alloys for 100 h at 800 °C. In this present study coating performances were checked after 10 months (7500 h) and 20 months (15 000 h) at 800 °C in air. The corrosion products were carefully analyzed by SEM, EDX, and XRD. ASR measurements are realized after long time exposure. This study demonstrates that the Crofer22APU alloy has a good oxidation resistance after 15 000 h in air but this alloy has an ASR value equal to 0.370 Ω cm2. The coatings composed of a thin reactive element oxide such as La2O3 resulted in an important improvement in the high temperature oxidation resistance; the ASR values are equal to 0.154 Ω cm2. Haynes230 alloy has a better oxidation resistance but the formation of an insulating Al2O3/SiO2 layer could be detrimental.
year | journal | country | edition | language |
---|---|---|---|---|
2011-01-12 | Materials and Corrosion |