6533b827fe1ef96bd1287102
RESEARCH PRODUCT
Theoretical study of the electronic spectrum of p-benzoquinone
Enrique OrtíRosendo Pou-amérigoManuela Merchánsubject
Valence (chemistry)ChemistryExcited statesGeneral Physics and AstronomyPerturbation theoryTriplet stateRydberg statesSpectral lineUNESCO::FÍSICA::Química físicaOrbital calculationssymbols.namesakeOrganic compounds Spectra ; Excited states ; Perturbation theory ; Triplet state ; Rydberg states ; Orbital calculationsOrganic compounds SpectraExcited stateIonizationRydberg formulasymbolsSinglet statePhysical and Theoretical ChemistryAtomic physicsTriplet state:FÍSICA::Química física [UNESCO]Excitationdescription
The electronic excited states of p-benzoquinone have been studied using multiconfigurational second-order perturbation theory (CASPT2) and extended atomic natural orbital (ANO) basis sets. The calculation of the singlet–singlet and singlet–triplet transition energies comprises 19 valence singlet excited states, 4 valence triplet states, and the singlet 3s,3p, and 3d members of the Rydberg series converging to the first four ionization limits. The computed vertical excitation energies are found to be in agreement with the available experimental data. Conclusive assignments to both valence and Rydberg states have been performed. The main features of the electronic spectrum correspond to the ππ∗ 1 1Ag→1 1B1u and ππ∗ 1 1Ag→3 1B1u transitions, computed to be at 5.15 and 7.08 eV, respectively. Assignments of the observed low-energy Rydberg bands have been proposed: An n→3p transition for the sharp absorption located at ca. 7.4 eV and two n→3d and π→3s transitions for the broad band observed at ca. 7.8 eV. The lowest triplet state is computed to be an nπ∗ 3B1g state, in agreement with the experimental evidence. pou@uv.es ; merchan@uv.es ; orti@uv.es
year | journal | country | edition | language |
---|---|---|---|---|
1999-05-15 |