6533b828fe1ef96bd12877b1

RESEARCH PRODUCT

Ab initio study of the electronic and atomic structure of the wolframite-type ZnWO4

Robert A. EvarestovAleksandr KalinkoAlexei Kuzmin

subject

ChemistryBand gapAb initioGeneral ChemistryElectronic structureCondensed Matter PhysicsQuantum chemistryLinear combination of atomic orbitalsAb initio quantum chemistry methodsPhysics::Atomic and Molecular ClustersMaterials ChemistryDensity functional theoryAtomic physicsMonoclinic crystal system

description

Abstract Ab initio quantum chemistry calculations of the structural and electronic properties of monoclinic wolframite-type ZnWO 4 crystal have been performed within the periodic linear combination of atomic orbitals (LCAO) method using six different Hamiltonians, based on density functional theory (DFT) and hybrid Hartree-Fock-DFT theory. The obtained results for optimized structural parameters, band gap and partial density of states are compared with available experimental data, and the best agreement is observed for hybrid Hamiltonians. The calculations show that zinc tungstate is a wide band gap material, with the direct gap about 4.6 eV, whose valence band has largely O 2p character, whereas the bottom of conduction band is dominated by W 5d states.

https://doi.org/10.1016/j.ssc.2009.01.003