6533b828fe1ef96bd128836d

RESEARCH PRODUCT

Tuning of ZnO 1D nanostructures by atomic layer deposition and electrospinning for optical gas sensor applications

Roman ViterRoman ViterKristaps KovalevskisAdib Abou ChaayaDonats ErtsMikhael BechelanyGrzegorz NowaczykPhilippe MieleIgor IatsunskyiIgor IatsunskyiValentyn Smyntyna

subject

PhotoluminescenceMaterials scienceNucleationBioengineeringNanotechnology02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesAtomic layer depositionchemistry.chemical_compoundCoating[CHIM]Chemical SciencesGeneral Materials ScienceElectrical and Electronic EngineeringComputingMilieux_MISCELLANEOUSbusiness.industryMechanical EngineeringPolyacrylonitrileGeneral Chemistry021001 nanoscience & nanotechnologyElectrospinning0104 chemical sciencesAmorphous solidchemistryMechanics of MaterialsNanofiberengineeringOptoelectronics0210 nano-technologybusiness

description

We explored for the first time the ability of a three-dimensional polyacrylonitrile/ZnO material—prepared by a combination of electrospinning and atomic layer deposition (ALD) as a new material with a large surface area—to enhance the performance of optical sensors for volatile organic compound (VOC) detection. The photoluminescence (PL) peak intensity of these one-dimensional nanostructures has been enhanced by a factor of 2000 compared to a flat Si substrate. In addition, a phase transition of the ZnO ALD coating from amorphous to crystalline has been observed due to the properties of a polyacrylonitrile nanofiber template: surface strain, roughness, and an increased number of nucleation sites in comparison with a flat Si substrate. The greatly improved PL performance of these nanostructured surfaces could produce exciting materials for implantation in VOC optical sensor applications.

10.1088/0957-4484/26/10/105501https://hal.umontpellier.fr/hal-01684636