6533b828fe1ef96bd128845c
RESEARCH PRODUCT
Long-run operation of a reverse electrodialysis system fed with wastewaters.
Andrea CipollinaGiorgio MicaleAlessandro CosenzaAlessandro TamburiniJavier Luque Di Salvosubject
SalinityEnvironmental Engineering02 engineering and technology010501 environmental sciencesManagement Monitoring Policy and LawWastewaterWastewater reuse01 natural sciencesElectricityReversed electrodialysisReverse electrodialysiOsmotic powerPressureSalinity gradient powerWaste Management and DisposalIon exchange membrane0105 earth and related environmental sciencesFoulingMembrane foulingMembranes ArtificialFoulingGeneral MedicineElectrodialysis021001 nanoscience & nanotechnologyPulp and paper industryUnit operation6. Clean waterWastewaterEnvironmental scienceElectric power0210 nano-technologydescription
The performance of a Reverse ElectroDialysis (RED) system fed by unconventional wastewater solutions for long operational periods is analysed for the first time. The experimental campaign was divided in a series of five independent long-runs which combined real wastewater solutions with artificial solutions for at least 10 days. The time evolution of electrical variables, gross power output and net power output, considering also pumping losses, was monitored: power density values obtained during the long-runs are comparable to those found in literature with artificial feed solutions of similar salinity. The increase in pressure drops and the development of membrane fouling were the main detrimental factors of system performance. Pressure drops increase was related to the physical obstruction of the feed channels defined by the spacers, while membrane fouling was related to the adsorption of foulants over the membrane surfaces. In order to manage channels partial clogging and fouling, different kinds of easily implemented in situ backwashings (i.e. neutral, acid, alkaline) were adopted, without the need for an abrupt interruption of the RED unit operation. The application of periodic ElectroDialysis (ED) pulses is also tested as fouling prevention strategy. The results collected suggest that RED can be used to produce electric power by unworthy wastewaters, but additional studies are still needed to characterize better membrane fouling and further improve system performance with these solutions.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 | Journal of environmental management |