6533b828fe1ef96bd1288522
RESEARCH PRODUCT
Moderately close Neumann inclusions for the Poisson equation
Matteo Dalla RivaPaolo Musolinosubject
General Mathematics010102 general mathematicsMathematical analysisGeneral Engineeringmixed problem; moderately close holes; Poisson equation; real analytic continuation in Banach space; singularly perturbed perforated domain; Mathematics (all); Engineering (all)Poisson equation01 natural sciences010101 applied mathematicsmixed problemsingularly perturbed perforated domainEngineering (all)Settore MAT/05 - Analisi MatematicaMathematics (all)0101 mathematicsPoisson's equationmoderately close holesMathematicsreal analytic continuation in Banach spacedescription
We investigate the behavior of the solution of a mixed problem for the Poisson equation in a domain with two moderately close holes. If ϱ1 and ϱ2 are two positive parameters, we define a perforated domain Ω(ϱ1,ϱ2) by making two small perforations in an open set: the size of the perforations is ϱ1ϱ2, while the distance of the cavities is proportional to ϱ1. Then, if r∗ is small enough, we analyze the behavior of the solution for (ϱ1,ϱ2) close to the degenerate pair (0,r∗). Copyright © 2016 John Wiley & Sons, Ltd.
year | journal | country | edition | language |
---|---|---|---|---|
2016-06-23 |