6533b828fe1ef96bd1288e7f
RESEARCH PRODUCT
Hybrid Circuits with Nanofluidic Diodes and Load Capacitors
Mubarak AliVicente GomezPatricio RamirezSaima NasirSalvador MafeVladimir García-moralesWolfgang Ensingersubject
Materials sciencebusiness.industryGeneral Physics and Astronomy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionCapacitorNanoporeMembranelawElectrical networkFISICA APLICADAOptoelectronicsElectric current0210 nano-technologybusinessBiosensorElectronic circuitDiodedescription
[EN] The chemical and physical input signals characteristic of micro- and nanofluidic devices operating in ionic solutions should eventually be translated into output electric currents and potentials that are monitored with solid-state components. This crucial step requires the design of hybrid circuits showing robust electrical coupling between ionic solutions and electronic elements. We study experimentally and theoretically the connectivity of the nanofluidic diodes in single-pore and multipore membranes with conventional capacitor systems for the cases of constant, periodic, and white-noise input potentials. The experiments demonstrate the reliable operation of these hybrid circuits over a wide range of membrane resistances, electrical capacitances, and solution pH values. The model simulations are based on empirical equations that have a solid physical basis and provide a convenient description of the electrical circuit operation. The results should contribute to advance signal transduction and processing using nanoporebased biosensors and bioelectronic interfaces.
year | journal | country | edition | language |
---|---|---|---|---|
2017-06-30 |