6533b829fe1ef96bd1289855
RESEARCH PRODUCT
Quadratic Objective Functions for Dichromatic Model Parameters Estimation
Yannick BenezethFranck MarzaniAlexandre Krebssubject
[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingLinear programmingColor imagebusiness.industry[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020206 networking & telecommunicationsImage processing02 engineering and technologyInverse problem[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Quadratic equation[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Specularity[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingRobustness (computer science)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionQuadratic programmingArtificial intelligencebusinessAlgorithmMathematicsdescription
International audience; In this paper, we present a novel method to estimate dichromatic model parameters from a single color image. Estimation of reflectance, shading and specularity has many applications such as shape recovery, specularity removal and facilitates classical image processing and computer vision tasks such as segmentation or classification. Our method is based on two successive and independent constrained quadratic programming steps to recover the parameters of the model. Compared to recent methods, our approach has the advantage to transform a complex inverse problem into two parralelizable optimization steps that are much easier to solve. We have compared our method with recent works in the field to assess its robustness and accuracy on accessible datasets. The advantages of our method are shown by analysing qualitatively and quantitatively the resulting image decompositions.
year | journal | country | edition | language |
---|---|---|---|---|
2017-11-01 |