6533b829fe1ef96bd12899e6

RESEARCH PRODUCT

Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cells.

Laetitia NivelleVirginie AiresDamien RioultDominique DelmasDominique DelmasLaurent MartinyMichel Tarpin

subject

0301 basic medicineBioproductsProgrammed cell deathCellCyclin AResveratrolepsilon-ViniferinCell cycleToxicologyS Phase03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line Tumor[SDV.IDA]Life Sciences [q-bio]/Food engineeringCDC2 Protein KinaseCyclin EStilbenesmedicineCytotoxic T cellAnticarcinogenic AgentsHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCyclin D1VitisMelanoma cellsMelanomaCyclinBenzofuransCell ProliferationSkinKinaseCyclin-Dependent Kinase 2food and beveragesPolyphenolsGeneral MedicineCell cycleFibroblasts3. Good health030104 developmental biologymedicine.anatomical_structurechemistryResveratrol030220 oncology & carcinogenesis[SDV.TOX]Life Sciences [q-bio]/ToxicologyCancer researchFood Science

description

IF 3.778 (2016); International audience; Very recently, we have produced new resveratrol derived compounds, especially labruscol by culture of elicited grapevine cell suspensions (Vitis labrusca L.). This new polyphenolic oligomer could function as cancer chemopreventive agent in similar manner of resveratrol. In this study, we have determined the efficiency of resveratrol, ε-viniferin and the labruscol on human melanoma cell with or without metastatic phenotype. Our results show a differential activity of the three compounds where the resveratrol remains the polyphenolic compound with the most effective action compared to other oligomers. These three compounds block cell cycle of melanoma cells in S phase by modulating key regulators of cell cycle i.e. cyclins A, E, D1 and their cyclin-dependent kinases 1 and 2. These effects are associated with an increase of cell death while these compounds have no cytotoxic action on normal human dermal fibroblasts.

10.1016/j.fct.2018.04.043https://pubmed.ncbi.nlm.nih.gov/29684496