6533b829fe1ef96bd1289a5a
RESEARCH PRODUCT
Expression of the ALS-causing variant hSOD1G93A leads to an impaired integrity and altered regulation of claudin-5 expression in an in vitro blood–spinal cord barrier model
Christian BehlSascha WeggenErik HameisterSteffen E. StorckSabrina MeisterClaus U. PietrzikAlbrecht M. Clementsubject
SOD1FOXO1Mice TransgenicBiologyOccludinCell LineMiceGene expressionAnimalsClaudin-5ClaudinProtein kinase BBarrier functionCells CulturedTight Junction ProteinsTight junctionSuperoxide DismutaseAmyotrophic Lateral SclerosisEndothelial CellsCell biologyDisease Models AnimalNeurologyGene Expression RegulationSpinal CordImmunologyOriginal ArticleNeurology (clinical)Cardiology and Cardiovascular MedicineSignal Transductiondescription
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to the loss of primary and secondary motor neurons. Mutations in the Cu/Zn-superoxide dismutase (SOD1) gene are associated with familial ALS and to date numerous hypotheses for ALS pathology exist including impairment of the blood–spinal cord barrier. In transgenic mice carrying mutated SOD1 genes, a disrupted blood–spinal cord barrier as well as decreased levels of tight junction (TJ) proteins ZO-1, occludin, and claudin-5 were detected. Here, we examined TJ protein levels and barrier function of primary blood–spinal cord barrier endothelial cells of presymptomatic hSOD1G93A mice and bEnd.3 cells stably expressing hSOD1G93A. In both cellular systems, we observed reduced claudin-5 levels and a decreased transendothelial resistance (TER) as well as an increased apparent permeability. Analysis of the β-catenin/AKT/forkhead box protein O1 (FoxO1) pathway and the FoxO1-regulated activity of the claudin-5 promoter revealed a repression of the claudin-5 gene expression in hSOD1G93A cells, which was depended on the phosphorylation status of FoxO1. These results strongly indicate that mutated SOD1 affects the expression and localization of TJ proteins leading to impaired integrity and breakdown of the blood–spinal cord barrier.
year | journal | country | edition | language |
---|---|---|---|---|
2015-04-08 |